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Abstract This paper derives expressions for the growth rates for the random 2 × 2 matrices
that result from solutions to the random Hill’s equation. The parameters that appear in Hill’s
equation include the forcing strength qk and oscillation frequency λk . The development of
the solutions to this periodic differential equation can be described by a discrete map, where
the matrix elements are given by the principal solutions for each cycle. Variations in the
(qk, λk) lead to matrix elements that vary from cycle to cycle. This paper presents an analysis
of the growth rates including cases where all of the cycles are highly unstable, where some
cycles are near the stability border, and where the map would be stable in the absence of
fluctuations. For all of these regimes, we provide expressions for the growth rates of the
matrices that describe the solutions.

Keywords Hill’s equation · Random matrices · Lyapunov exponents

1 Introduction

This paper considers the growth rates for Hill’s equation with parameters that vary from
cycle to cycle. In this context, Hill’s equation takes the form

d2y

dt2
+ [λk + qkQ̂(t)]y = 0, (1)

where the barrier shape function Q̂(t) is periodic, so that Q̂(t + �τ) = Q̂(t), where �τ is
the period. Here we take �τ = π , and the function Q̂ is normalized so that

∫ �τ

0 Q̂dt = 1.
The forcing strength parameters qk are a set of independent identically distributed (i.i.d.)
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random variables that take on a new value every cycle (where the index k labels the cycle).
The parameters λk , which determine the oscillation frequency in the absence of forcing, also
vary from cycle to cycle (and are i.i.d.). In principal, the cycle interval �τ could also vary;
however, this generalized case can be reduced to the problem of (1) through an appropriate
re-scaling of the other parameters (see Theorem 1 of [1]).

Hill’s equations [9] with constant values of the parameters have been well studied and
arise in a wide variety of applications [12]. The introduction of parameters that sample a
distribution of values is thus a natural generalization of this classic problem. Here we refer
to the case with constant parameters as the “classical regime” of the general case.

For this class of periodic differential equations, the transformation that maps the coeffi-
cients of the principal solutions from one cycle to the next takes the form

Mk =
[

hk (h2
k − 1)/gk

gk hk

]

, (2)

where the subscript denotes the cycle. The matrix elements are defined by hk = y1(π) and
gk = ẏ1(π) for the kth cycle, where y1 and y2 are the principal solutions for that cycle. Note
that the matrix has only two independent elements rather than four: Since the Wronskian
of the original differential equation (1) is unity, the determinant of the matrix map must be
unity, and this constraint eliminates one of the independent elements. In addition, this paper
specializes to the case where the periodic functions Q̂(t) are symmetric about the midpoint
of the period, so that y1(π) = ẏ2(π), which eliminates a second independent element [12];
this symmetry applies to the applications that motivated this work.

For transformation matrices Mk of the form (2), the eigenvalues λk can be used to clas-
sify the matrix types [11]. The characteristic polynomial has the form

λ2
k − 2hkλk + 1 = 0. (3)

This equation allows for three classes of eigenvalues λk : For |hk| > 1, the eigenvalues are
real and have the same sign, and the transformation matrix is hyperbolic symplectic; we
denote this regime as classically unstable. When |hk| < 1, the eigenvalues are complex and
the matrix is elliptic; this regime is denoted as classically stable. The remaining possibility is
for |hk| = 1, which leads to degenerate eigenvalues equal to either +1 or −1; these matrices
are parabolic and are stable under multiplication.

This paper studies the multiplication of infinite strings of random matrices of the form
(2), i.e., the product of N such matrices in the limit N → ∞. The problem of finding
growth rates for infinite products of matrices with random elements was formulated over
four decades ago [7, 8, 13], where existence results were given. We recall the key result here
for convenience:
For a k × k matrix A with real or complex entries, let ‖A‖ denote the Frobenius norm.

Theorem [8] Let X1,X2,X3, . . . form a metrically transitive stationary stochastic process
with values in the set of k × k matrices. Suppose log+ ‖X1‖ exists, where log+t =
max(log t,0), then the limit limN→∞ ‖XNXN−1 · · ·X1‖ exists.

Determination of the growth rates are thus carried out in the limit of large N , and all
probabilistic limits given here are meant almost surely.

A great deal of subsequent work has studied differential equations of the form (1) and the
growth rates of the corresponding random matrices [5, 6, 10, 14, 15]. See also the paper [4].
In spite of this progress, there are relatively few examples that provide explicit expressions
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for the growth rates. The goal of this paper is relatively modest: It provides (what we believe
to be) new analytic expressions for the growth rates of random matrices of the form (2).
These expressions are derived for various regimes of parameter space, as described below.

The outline of this paper is as follows: Sect. 2 reviews the astrophysical background that
led us to this topic. Section 3 considers matrix multiplication for the case where the solu-
tions are unstable in the classical regime. Section 4 develops approximations for this regime
and provides some numerical verification. Section 5 considers matrix multiplication in the
regime where the solutions are classically stable. In this case, the transformation matrices
Mk correspond to elliptical rotations and matrix multiplication is stable in the absence of
fluctuations; random variations in the matrix elements render the solutions unstable. The
paper concludes (in Sect. 6) with a brief summary of the results.

2 Astrophysical Background

The motivation for considering random Hill’s equations arose in studies of orbit problems
in astrophysics [3]. When an orbit starts in the principal plane of a triaxial, extended mass
distribution (such as a dark matter halo), the motion is unstable to perturbations in the per-
pendicular direction. The development of the instability is described by a random Hill’s
equation with the form given by (1).

To illustrate this type of behavior, consider an extended mass distribution with a density
profile of the form

ρ = ρ0

m
with m2 = x2

a2
+ y2

b2
+ z2

c2
, (4)

where ρ0 is a density scale. This form arises in many different astrophysical contexts, in-
cluding dark matter halos, galactic bulges, and young embedded star clusters. The density
field is thus constant on ellipsoids, where, without loss of generality, a > b > c > 0. For this
density profile, one can find analytic forms for both the gravitational potential and the force
terms [3]. From these results, one can determine the orbital motion for a test particle moving
in the potential resulting from the triaxial density distribution of (4). When the orbit begins
in any of the three principal planes, the motion is generally unstable to perturbations in the
perpendicular direction [1, 3]. For example, for an orbit initially confined to the x–z plane,
the amplitude of the y coordinate will (usually) grow exponentially with time. In the limit
of small |y| � 1, the equation of motion for the perpendicular coordinate simplifies to the
form

d2y

dt2
+ ω2

yy = 0 where ω2
y = 4/b√

c2x2 + a2z2 + b
√

x2 + z2
. (5)

The time evolution of the coordinates (x, z) is determined by the orbit in the original x–z

plane. Since the orbital motion is nearly periodic, the [x(t), z(t)] dependence of ω2
y rep-

resents a nearly periodic forcing term. The forcing strengths, and hence the parameters qk

appearing in Hill’s equation (1), are determined by the inner turning points of the orbit
(with appropriate weighting from the axis parameters [a, b, c]). Since the orbits are usually
chaotic, the distance of closest approach, and hence the strength qk of the forcing, varies
from cycle to cycle. The outer turning points of the orbit provide a minimum value of ω2

y ,
which defines the unforced oscillation frequency λk appearing in Hill’s equation. As a result,
the quantity ω2

y can be written in the form

ω2
y = λk + Qk(t), (6)
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where the index k counts the number of orbit crossings. The shapes of the functions Qk are
nearly the same, so that one can write Qk = qkQ̂(t), where Q̂(t) is periodic. The chaotic
orbit in the original plane leads to different values of λk and qk for each crossing. The
equation of motion (5) for the y coordinate thus takes the form of Hill’s equation (1), where
the period, forcing strength, and oscillation frequency vary from cycle to cycle.

3 Matrix Multiplication for the Classically Unstable Regime

The goal of this work is to find growth rates for solutions of the differential equation (1).
These growth rates are determined by multiplication of the random matrices Mk (from (2))
that connect solutions from cycle to cycle. These transformation matrices can also be written
in the form

Mk = hk Bk where Bk =
[

1 xkφk

1/xk 1

]

, (7)

where xk = hk/gk and φk = 1 − 1/h2
k . By virtue of our assumption on the variables (qk , λk),

the matrices Mk form a sequence of i.i.d. matrices. In this section, we consider the problem
of matrix multiplication with matrices of the form (7). We specialize to the case where the
solutions are unstable in the classical regime so that |hk| ≥ 1 and to the case where xk > 0.
We also assume that the hk , xk , and 1/xk have finite means. With the matrices written in the
form (7), the highly unstable regime considered in [1] can be defined as follows:

Definition Given that solutions to Hill’s equation (1) are determined by transformation ma-
trices of the form (7), the highly unstable regime is defined by setting φk = 1. This specifi-
cation thus defines a restricted problem.

We remark that the above regime applies when the matrix elements |hk| � 1, which
occurs for forcing strength parameters qk � 1 [2].

The growth rates for Hill’s equation (1) are determined by the growth rates for matrix
multiplication of the full set of matrices Mk . For a given matrix product, denoted here as
M(N), the growth rate γ is determined by

γ = lim
N→∞

1

N
log‖M(N)‖, (8)

where the result is independent of the choice of norm ‖ · ‖. We note that the growth rate is
called the top or largest Lyapunov exponent.

Equation (7) separates the growth rate for this problem into two parts. Let the expectation
value of a sequence Xk be denoted by

〈Xk〉 = lim
N→∞

1

N

N∑

k=1

Xk.

Then the first part γh of the growth rate is given by

γh = lim
N→∞

1

N

N∑

k=1

log |hk| = 〈log |hk|〉. (9)
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We limit our discussion to distributions of the hk for which this limit is finite. The remaining
part of the growth rate is determined by matrix multiplication of the Bk . Note that the original
differential equation (1) is defined on a time interval 0 ≤ t ≤ π , so that the definition of its
growth rate includes a factor of π [12], whereas the growth rate for matrix multiplication
(8) generally does not [8]. Ignoring these normalization issues, this paper focuses on the
calculation of the growth rates for the matrices Mk and Bk .

The product of N matrices of type Bk can be written in the form

B(N) ≡
N∏

k=1

Bk =
[


11 x1
12

(1/x1)
21 
22

]

, (10)

where the first equality defines notation and where


11 =
2N−1
∑

j=1

rjaj , 
12 =
2N−1
∑

j=1

rjbj ,


21 =
2N−1
∑

j=1

1

rj

cj , 
22 =
2N−1
∑

j=1

1

rj

dj . (11)

Here, the variables rj are products of ratios of the form

rj = xμ1xμ2 . . . xμn

xν1xν2 . . . xνn

. (12)

The indices are confined to the range 1 ≤ μi, νi ≤ N . The additional factors aj , bj , cj , dj

are products of the variables φj , and can be written in the form

aj =
N∏

k=1

φ
pk

k where pk = 0 or 1. (13)

Result 1 For the case where |hk| > 1 for all cycles, and in the limit of large N , the eigen-
value of the product matrix is given by the formula

λ = 
11 + 
22 + O
(
h−2N

)
, (14)

where each of these quantities should be labeled at the N th iteration.

Proof The characteristic equation of the product matrix of (10) takes the form

λ2 − λ(
11 + 
22) + 
11
22 − 
12
21 = 0. (15)

The final term is the determinant of the product matrix, and this determinant is given by the
product of the individual matrices, so that


11
22 − 
12
21 =
N∏

k=1

(1 − φk) =
N∏

k=1

1

h2
k

. (16)

Given that |hk| > 1 ∀k, this term vanishes in the limit N → ∞. As a result, the growing
eigenvalue of the characteristic equation (15) simplifies to the form λ = 
11 + 
22. �
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Result 2 The four sums that specify the matrix elements of the product matrix are not
independent. In particular, for the case where |hk| > 1 and in the limit N → ∞, the ratios
of the matrix elements approach the form


12


11
= 
22


21
= constant ≡ f. (17)

Proof As shown above, the determinant of the product matrix vanishes in the limit N → ∞,
so that in the limit


11
22 = 
12
21. (18)

The result implied by the first equality of (17) follows immediately.
Further, one can show by direct construction that if the relation of (17) holds, then the

relation is preserved under matrix multiplication. Let the product matrix after N cycles have
the form

B(N) =
[


T f x1
T

(1/x1)
B f 
B

]

, (19)

where f is the constant in (17). Then the matrix takes the following from after the next
cycle:

B(N+1) =
[


T + (x/x1)φ
B x1f (
T + (x/x1)φ
B)

(1/x1)(
B + (x1/x)
T ) f (
B + (x1/x)
T )

]

, (20)

so that the left-right symmetry relation is conserved. �

In the above proof we have adopted notation that is used throughout this paper: The
subscript ‘1’ denotes the values of the parameters (e.g., x1) for the first cycle in the series.
Since the results of this problem can be written in terms of this starting value, these ini-
tial values play a recurring role. The subscript ‘N ’ denotes the values of the parameters
(e.g., xN ) appropriate for the N th cycle of the series. In iteration formulae, however, we use
unsubscripted variables (e.g., x) for the next (N + 1)st cycle.

Result 3 In the highly unstable regime, the ratio of 
T to 
B has the form:


T


B

= x

x1
. (21)

Proof From our previous results (see (19) of [1]), the product matrix after N cycles has
the form given by (19) with f = 1 (in the highly unstable regime). After one additional
multiplication, we obtain the form given by (20) with f = 1. We thus find


T
(N+1)


B
(N+1)

= 
T
(N) + (x/x1)
B

(N)


B
(N) + (x1/x)
T

(N)
= x

x1
. (22)

For each cycle the ratio x/x1 has a different value, so that no limit is reached as N → ∞.
However, the ratio at any given finite cycle obeys (21). �

To derive an expression for the growth rate for matrix multiplication, we first define

S ≡ 
11 + 
22. (23)
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As shown in the proof of Result 1, the eigenvalue of the product matrix approaches S, as
defined above, in the limit N → ∞. By construction, the iteration formula for S takes the
form

S(N+1) = S(N)

[

1 + (x/x1)φ
21
(N) + (x1/x)
12

(N)


11
(N) + 
22

(N)

]

. (24)

Using the definition of f , 
T , and 
B , this expression can be simplified to the form

S(N+1) = S(N)

[

1 + (x/x1)φ
B
(N) + (x1/x)f 
T

(N)


T
(N) + f 
B

(N)

]

. (25)

Result 4 In the highly unstable regime the iteration formula for the eigenvalue reduces to
the form

S(N+1) = S(N)
[
1 + xN

x

]
. (26)

This result agrees with that of Theorem 2 from [1].

Proof In the highly unstable regime φ = 1, f = 1, and (21) holds for the ratio of 
T /
B .
The iteration formula of (25) thus reduces to

S(N+1) = S(N)

[

1 + (x/x1) + (xN/x)

1 + xN/x1

]

= S(N)
[
1 + xN

x

][ x1 + x

x1 + xN

]

. (27)

Since the starting value x1 is fixed, the second factor in square brackets approaches unity in
the limit N → ∞, i.e.,

lim
N→∞

N∏

k=1

[
x1 + xk+1

x1 + xk

]

= 1. (28)

The expression of (27) thus reduces to that of (26). �

Motivated by the result of (21) for the highly unstable regime, we write the ratio of matrix
elements for the general case in the form


T
(N)


B
(N)

= xN

x1
αN, (29)

so that

S(N+1) = S(N)

[

1 + (x/x1)φ + (xN/x)f αN

f + αN(xN/x1)

]

≡ FNS(N), (30)

where the second equality defines FN . The parameter αN incorporates the correction due
to the matrices not being in the highly unstable regime. Note that f approaches a constant
value (from Result 2) and x1 is a constant (by definition). The iteration factor FN can be
rewritten in the form

FN =
[

1 + x2φ + bαNxN

x(b + αNxN)

]

where b ≡ f x1. (31)
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Theorem 1 The growth rate for matrix multiplication, with products of the general form
defined through (10), is given by

γ = lim
N→∞

1

N

N∑

k=1

log

[

1 + x2
k φk + αk−1xk−1

xk(1 + αk−1xk−1)

]

, (32)

where the αk are determined through the iteration formula

αk = xkφk + xk−1αk−1

xk + xk−1αk−1
. (33)

Proof Note that existence of the required limit holds by the Theorem of [8]. Equations (30)–
(31) show that the growth rate is given by

γ = lim
N→∞

1

N

N∑

k=1

log Fk = lim
N→∞

1

N

N∑

k=1

log

[

1 + x2
k φk + bαk−1xk−1

xk(b + αk−1xk−1)

]

, (34)

where this form is exact, provided that the αk are properly specified. This issue is addressed
below. To complete the proof, we must also show that the growth rate is independent of the
value of b, so that we can set b = 1 in the above formula. The derivative of the growth rate
with respect to the parameter b takes the form

dγ

db
= lim

N→∞
1

N

N∑

k=1

1

Fk

dFk

db
, (35)

which can be evaluated to take the form

dγ

db
= lim

N→∞
1

N

N∑

k=1

(αk−1xk−1)
2 − x2

k φk

(b + αk−1xk−1)[xk(b + αk−1xk−1) + x2
k φk + bαk−1xk−1] . (36)

This expression vanishes in the limit.
To show that the αk are given by (33), we start with the result of matrix multiplication

from (20) and use the definition of αk from (29); these two results imply that

αk+1 = x1

xk+1


T
(k+1)


B
(k+1)

= x1

xk+1


T
(k) + (xk+1/x1)φk+1
B

(k)


B
(k) + (x1/xk+1)
T

(k)
. (37)

We can then eliminate the factors of 
T and 
B by again using the definition of αk from
(29), and thus obtain

αk+1 = x1

xk+1

(xk/x1)αk + (xk+1/x1)φk+1

1 + (xk/xk+1)αk

= xkαk + xk+1φk+1

xk+1 + xkαk

. (38)

After re-labeling the indices, we obtain (33). �

4 Approximations for the Classically Unstable Regime

For classically unstable matrices with |hk| > 1, Theorem 1 provides an exact expression
for the growth rate. Since the formulae are complicated, this section presents simpler but
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approximate expressions for the growth rates for the case where φk are small (Theorem 2)
and where the differences 1 − φk are small (Theorem 3). We also present two heuristic
approximations for the growth rates for the general problem.

Theorem 2 In the regime where the variables φk are small, φkxk � 1 ∀k, the growth rate
for the matrix Bk tends in the limit of large N to the form:

γ = log
(

1 + [〈1/xk〉〈xkφk〉
]1/2
)

+ O (〈xkφk〉) . (39)

Proof We first break up the matrix into two parts so that Bk = I + Ak , where I is the identity
matrix and where

Ak =
[

0 xkφk

1/xk 0

]

=
[

0 ηk

yk 0

]

. (40)

Note that the second equality defines ηk = xkφk and yk = 1/xk . We first show (by induction)
that repeated multiplications of the matrices Ak lead to products with simple forms. The
products of even numbers N = 2� of matrices Ak produce diagonal matrices of the form

A(N) = A(2�) =
N∏

k=1

Ak =
[

P A
� 0
0 P B

�

]

, (41)

where the products P� are defined by

P A
� =

�∏

i=1

(η2i ) (y2i−1) and P B
� =

�∏

i=1

(η2i−1) (y2i ) . (42)

Similarly, the product of odd numbers N = 2� + 1 of matrices Ak produce off-diagonal
matrices of the form

A(N) = A(2�+1) =
N∏

k=1

Ak =
[

0 QB
� η1

QA
� y1 0

]

, (43)

where the products Q� are defined analogously to the P�. The product of N matrices Bk can
then be written in the form

B(N) =
N∏

k=1

Bk =
[


11 
12η1


21y1 
22

]

. (44)

Without loss of generality, let N = 2� be even. Then the matrix elements are given by


11 =
N/2∑

�=0

CN
2�∑

j=1

(
P A

�

)
j
, 
22 =

N/2∑

�=0

CN
2�∑

j=1

(
P B

�

)
j
,

(45)


12 =
N/2−1∑

�=0

CN
2�+1∑

j=1

(
QB

�

)
j
, 
21 =

N/2−1∑

�=0

CN
2�+1∑

j=1

(
QA

�

)
j
,

where CN
� is the binomial coefficient and where the subscripts on the P� and Q� denote

different realizations of the products.
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The eigenvalue �N of the product matrix at the N th iteration is given by its characteristic
equation, which has the solution

�N = 1

2

{

11 + 
22 + [(
11 − 
22)

2 + 4
12
21η1y1
]1/2
}

. (46)

In the limit of large N , we can make the approximation that 
11 ≈ 
22 and 
12 ≈ 
21, so
that the expression for the eigenvalue takes the form

�N = 
11 + 
12
[
η1y1

]1/2 =
N/2∑

�=0

CN
2�∑

j=1

(
P A

�

)
j
+

N/2−1∑

�=0

CN
2�+1∑

j=1

(
QB

�

)
j

[
η1y1

]1/2
. (47)

In the limit of large N , all the binomial coefficients are large except for the first and last one.
We can thus rewrite the above equation in the form

�N =
N/2∑

�=0

CN
2�

(〈
P A

�

〉+ ε�

)+
N/2−1∑

�=0

CN
2�+1

(〈
QB

�

〉+ ε�

) [
η1y1

]1/2
. (48)

If the realizations of the products (P�)j were independent, the error terms ε� would vanish
in the limit. However, for a given N , the sums contain CN

2� terms, and CN
2� > N in general,

so all of the terms in the sum cannot be independent. We then write the products 〈P A
� 〉 and

〈QB
� 〉 in the form

〈
P A

�

〉+ ε� = 〈ηj 〉�〈yj 〉�(1 + ε�)
�, (49)

and similarly for 〈QB
� 〉. This form is exact if one uses the proper expressions for the ε�.

Using this result, the expression for the eigenvalue �N becomes

�N =
N/2∑

�=0

CN
2�〈ηj 〉�〈yj 〉�(1 + ε�)

� +
N/2−1∑

�=0

CN
2�+1〈ηj 〉�〈yj 〉�(1 + ε�)

�
[
η1y1

]1/2
, (50)

which takes the form

�N =
N∑

k=0

CN
k 〈ηj 〉k/2〈yj 〉k/2(1 + εk)

k/2. (51)

If we expand this result, we find that

�N = 1 + N〈ηj 〉1/2〈yj 〉1/2(1 + ε1)
1/2 + CN

2 〈ηj 〉〈yj 〉(1 + ε2) + · · · . (52)

Further, by performing an exact treatment of the first order expansion [2] we find that ε1 = 0.
This finding allows us to write the product in the form

�N = [1 + 〈ηj 〉1/2〈yj 〉1/2 + O(ηj )
]N

. (53)

The growth rate thus becomes

γ = log
[
1 + 〈ηj 〉1/2〈yj 〉1/2

]+ O(ηj ). (54)

This last expression is valid provided that ηj � 1 ∀j . �
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Fig. 1 Growth rates for small φk . The variables φk are determined through the relation φk = aφξk , where
ξk is uniformly distributed on [0,1]. The solid curve shows the growth rate γ calculated directly from matrix
multiplication as a function of the amplitude aφ . The dashed curve shows the estimate γ2 for the growth rate
from Theorem 2. The dotted curve shows the difference �γ = γ2 −γ . Note that γ ∝ √

aφ whereas �γ ∝ aφ

Note that to consistent order, we can replace the limiting form of (39) with the equivalent,
simpler function

γ → [〈1/xk〉〈ηk〉
]1/2

. (55)

Figure 1 illustrates how well the approximation of Theorem 2 works. For the sake of def-
initeness, the variables xk are log-uniformly distributed with log10 xk ∈ [−2,2]. The φk obey
the relation φk = aφξk , where ξk is a uniformly distributed random variable over the interval
[0,1]. As shown by the figure, the limiting form of (39) provides an excellent description of
the calculated growth rate for sufficiently small φk .

Next we consider the case where the correction factors φk are close to unity. In this case
the variables (1 − φk) � 1, and we can expand to leading order in (1 − φk). This procedure
leads to the following result:

Theorem 3 Let γ0 be the growth rate for the highly unstable regime where φk = 1. For
small perturbations about this limiting case, the growth rate takes the form γ = γ0 − δγ ,
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where

δγ = lim
N→∞

1

N

N∑

k=1

(1 − φk)x
2
k

(xk+1 + xk)(xk + xk−1)
+ O

(〈x2
k (1 − φk)

2〉) . (56)

Proof We again break up the matrix into two parts,

Bk = Ck − εk Z with Z ≡
[

0 1
0 0

]

, (57)

where here εk ≡ xk(1 − φk) and Ck is the matrix appropriate for the highly unstable regime.
Note that Z does not depend on the index k. Here we work to first order in the small para-
meter εk . After N cycles, the product matrix takes the form

B(N)
k =

N∏

k=1

Bk = C(N)
k −

N∑

k=1

εk P N
k + O(ε2

k ), (58)

where the partial product matrices P N
k are given by

P N
k =

⎧
⎨

⎩

N∏

j=k+1

Cj

⎫
⎬

⎭
Z

⎧
⎨

⎩

k−1∏

j=1

Cj

⎫
⎬

⎭
. (59)

We ignore the case where the Z factors appear on the ends—this effect is O(1/N) and
vanishes in the limit. The products of the Ck matrices can be written in the form

C(N)
k = 
N

T

[
1 x1

1/xN x1/xN

]

where 
N
T =

N∏

j=2

(

1 + xj

xj−1

)

, (60)

where these results follow from previous work [1]. As a result, the matrices P N
k can be

evaluated:

P N
k = xk


N
T

(xk + xk+1)(xk−1 + xk)

[
1 x1

1/xN x1/xN

]

= xk

(xk + xk+1)(xk−1 + xk)
C(N)

k . (61)

The product matrix B(N)
k , given by (58) to leading order, can now be written in the form

BN
k = CN

k

[

1 −
N∑

k=1

(1 − φk)x
2
k

(xk + xk+1)(xk−1 + xk)

]

. (62)

The first factor is the product of the matrices for the highly unstable regime. Since the second
factor is a function (not a matrix) its contribution to the growth rate is independent of the
first factor and represents a correction to the growth rate of the form

δγ = lim
N→∞

1

N

N∑

k=1

(1 − φk)x
2
k

(xk + xk+1)(xk−1 + xk)
+ O(ε2

k ), (63)

where the equalities hold to leading order. This correction to the growth rate has the form
given by (56). �
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Fig. 2 Growth rates for φk near unity. The variables φk are determined through the relation φk = 1 − Aφξk ,
where ξk is uniformly distributed on [0,1]. The solid curve shows the quantity δγ = γ0 − γ , where γ is the
growth rate calculated from matrix multiplication and γ0 is the growth rate for the highly unstable regime
(φk = 1∀k). The dashed curve shows the estimate (δγ )3 = (γ0 − γ )3 for the difference in growth rate cal-
culated from Theorem 3. The dotted curve shows the error � = (δγ )3 − δγ . Note that δγ ∝ Aφ whereas the

error term � ∝ (Aφ)2

Figure 2 shows the growth rate for small departures from the highly unstable regime.
The correction factors are taken to have the form φk = 1 − Aφξk , where ξk is a uniformly
distributed random variable over the interval [0,1]. The highly unstable regime corresponds
to Aφ → 0. The figure shows the growth rate calculated from direct matrix multiplication
(solid curve) and the approximation from Theorem 3 (dashed curve) plotted as a function of
the amplitude Aφ . Both curves plot the difference γ0 −γ , where γ0 is the growth rate for the
highly unstable regime (where the φk = 1).

Since the general case is quite complicated it is useful to have a good working approxi-
mation for the case where one is not in one of the two regimes φk small or near unity. Toward
this end, we first show that the values of αk have a limited range:

Result 5 The variables αk are confined to the range φmin ≤ αk ≤ 1, where φmin is the mini-
mum value of φk .
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Proof We can rewrite the iteration formula (33) for αk in the alternate form

αk = φk + βk

1 + βk

, (64)

where we have defined the composite random variable βk ≡ αk−1xk−1/xk . In the present
context, 0 ≤ βk < ∞, and we can show that

dαk

dβk

> 0 (65)

for all values of βk . In the limit βk → ∞, αk → 1, whereas in the limit βk → 0, αk → φ.
Hence φ ≤ αk ≤ 1 for all cycles. But φ ≥ φmin, by definition, so that φmin ≤ αk ≤ 1. �

Approximation 1 As a first heuristic approximation, we replace the full iteration expression
of (33) for αk with the following simplified form

αk+1 = xφ + xk

x + xk

, (66)

i.e., we use αk = 1 as an approximation for the previous value [keep in mind that x is the
value at the (k + 1)th cycle]. Using (66) to evaluate αk in the iteration formula for Fk , we
obtain a working approximation for the growth rate. Notice that αk appears in the itera-
tion formula for Fk , so that we must use (66) evaluated at k rather than k + 1. As a result,
the iteration factor Fk involves the random variables xk from three cycles, or, equivalently
(since the xk are i.i.d.) three separate samplings of the variables. We change notation so
that xj1, xj2, xj3 denote the three independent samplings of the random variables xk . Simi-
larly, let φj1, φj2 denote two independent samplings of the φk . The iteration formula for this
approximation can then be written in the form

Fj = 1 + x2
j1φj1(xj2 + xj3) + xj2(xj2φj2 + xj3)

xj1[(xj2 + xj3) + xj2(xj2φj2 + xj3)] . (67)

The growth rate for matrix multiplication can then be approximated by

γ = lim
N→∞

1

N

N∑

j=1

log Fj , (68)

where Fj is given by (67). As a consistency check, for the restricted problem where the
φjn = 1, the iteration factor Fj reduces to that appropriate for the highly unstable regime
(see (26)).

Approximation 2 To derive a second approximation for the growth rate, we need a bet-
ter approximation for the αk . If the values of xk and φk were constant, then the αk would
approach a constant value given by

αk = 1

2

{
(1 − xk/xk−1) + [(1 − xk/xk−1)

2 + 4(xk/xk−1)φk

]1/2
}

. (69)

Even though the xk and φk are not constant, and the αk vary, we can use (69) as an approxi-
mation to specify the values of αk appearing in the exact formula of (32) for the growth rate.
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Fig. 3 Validity of approximations of (68) and (70) as a function of the deviation of φk from unity. The
upper solid line shows the growth rate for matrix multiplication in the highly unstable regime where φk = 1.
The lower solid curve shows the growth rate for the case where φk = 1 − Aφξk , where ξk is a uniformly
distributed random variable 0 ≤ ξk ≤ 1. The dotted curve shows the estimate for growth rate calculated from
(68) using the same sampling of the φk variables; similarly, the dot-dashed curve shows the approximation
of (70). Notice that both of these approximations are almost identical to the actual result. The dashed curve
shows the lower limit to the growth rate derived in [1]

After using this form to specify the αk , and relabeling the indices, the iteration factor takes
the form

Fk = 1 + x2
k1φk12xk3 + xk2{(xk3 − xk2) + [(xk3 − xk2)

2 + 4xk2xk3φk2]1/2}
xk1(2xk3 + xk2{(xk3 − xk2) + [(xk3 − xk2)2 + 4xk2xk3φk2]1/2}) . (70)

In the case φjn = 1, the iteration factor of (70) reduces to the expression for the highly
unstable regime (Result 4).

Figure 3 shows how well these two approximation schemes work. The φk variables are
chosen from the expression φk = 1−Aφξk , where ξk is a random variable uniformly sampled
from the interval 0 ≤ ξk ≤ 1 and where Aφ sets the amplitude of the departures of the φk

from unity. The growth rate is shown as a function of the amplitude.
In [1], we derived a bound on the difference between the growth rate for the general case

γ (considered here) and the growth rate in the highly unstable regime γ0, i.e.,

γ0 − γ ≤ 1

2
〈logφk〉. (71)
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This bound is shown as the dashed curve in Fig. 3. The true growth rates fall comfortably
between this lower bound and the growth rate for the highly unstable regime (where the
latter provides an upper bound).

Thus far, this paper has focused on the regime where the transformation matrices are
classically unstable. Before considering classically stable matrix multiplication in the next
section, we note the following result that applies at the transition between the two regimes:

Result 6 Consider the matrix transformation that maps the principal solutions from one
cycle to the next. When the matrix elements gk = ẏ1(π) vanish, then the remaining matrix
elements are hk = y1(π) = ±1. The transformation matrix Mg0 for this case is stable under
multiplication.

(The proof is a simple explicit computation.)

5 Elliptical Rotations and the Classically Stable Regime

When the principal solutions hk appearing in the discrete map of (2) are less than unity,
matrix multiplication is stable for the case of constant parameters. In the case of interest,
however, the parameters in Hill’s equation (1) and the matrices (2) vary from cycle to cycle.
This section considers the case where the |hk| ≤ 1, but vary from cycle to cycle, and show
that instability results. In this regime, the discrete map takes the form of an elliptical rotation
matrix [11] as described below. We thus find the growth rates for elliptical rotation matrices
for the case where the matrix elements vary from cycle to cycle.

Definition An elliptical rotation matrix is defined to be

E (θ;L) ≡
[

cos θ −L sin θ

(1/L) sin θ cos θ

]

. (72)

These matrices have the following properties:
The product of elliptical rotation matrices with the same value of L produces another ellip-
tical rotation matrix, also with the same L,

E (θ1;L)E (θ2;L) = E ([θ1 + θ2];L) . (73)

As a result, the elliptical rotation matrices form a group.
For fixed L, matrix multiplication is stable. Specifically, the eigenvalues of the product of
N matrices (with fixed L) have the form

λ = exp

⎡

⎣±i

N∑

j=1

θj

⎤

⎦= exp [±iθN ] , (74)

where θN is the angle corresponding to the group element produced after N matrix multi-
plications.

Result 7 When an individual cycle of Hill’s equation is stable, specifically when |hk| ≤ 1,
the full transformation matrix Mk takes the form of an elliptical rotation.
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Proof Since |hk| ≤ 1, we can define an angle θk such that hk = cos θk . The full matrix Mk

given by (7) then takes the form

Mk =
[

cos θk −(sin2 θk)/gk

gk cos θk

]

=
[

cos θk −Lk sin θk

(1/Lk) sin θk cos θk

]

= Ek(θk;Lk), (75)

where we have defined Lk = (sin θk)/gk . As before, we can factor out the cos θk = hk and
write the matrix in the form

Mk = cos θk

[
1 xkφk

1/xk 1

]

= cos θk Bk, (76)

where

xk = Lk/ tan θk and φk = − tan2 θk. (77)

Equation (77) thus specifies the transformation between the random variables (xk,φk) ap-
pearing in the original transformation matrix and the random variables (θk,Lk) in the cor-
responding elliptical rotation matrix. Note that the values of φk are strictly negative in this
formulation. Otherwise, the matrix Bk has the same form as in (7). �

If we let γB be the growth rate for matrix Bk , then the growth rate γM for the full matrix
Mk takes the form

γM = γB + lim
N→∞

1

N

N∑

k=1

log[cos θk]. (78)

The exact growth rate for the matrix Bk (see (76)) is given by Theorem 1. In particular, (32)
and (33) remain valid for negative values of the φk and can be used to calculate the growth
rate.

Result 8 For an elliptical rotation matrix with constant angle θ and random Lk , the growth
rate for matrix multiplication vanishes in the two limits h = cos θ → 0 and h = cos θ → 1.

Proof In the limit h → 1 we have sin θ = 0, and the elliptical rotation matrix becomes the
identity matrix. As a result, the growth rate vanishes.
In the other case where h → 0, sin θ = 1, and the matrix takes the form

Ek → E0k =
[

0 −Lk

1/Lk 0

]

. (79)

In this case, for even numbers of matrix multiplications, say N = 2n, the product matrix
takes the form

E (N)

0k =
N∏

k=1

E0k = (−1)n

[
P A

n 0
0 P B

n

]

, (80)

where the matrix elements are given by the products

P A
n =

n∏

k=1

L2k

L2k−1
and P B

n =
n∏

k=1

L2k−1

L2k

. (81)
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The eigenvalues of the product matrix are given by λ = P A
n and λ = P B

n . For odd N =
2n + 1, the eigenvalue |λ| = (P A

n P B
n )1/2. In either case, in the limit of large N , the growth

rate for matrix multiplication takes the form

γ = lim
N→∞

1

N

N∑

k=1

log

[
L2k

L2k−1

]

= 〈logL2k〉 − 〈logL2k−1〉 = 0. (82)

The final equality holds because the Lk are independent. �

Elliptical rotation matrices are unstable under multiplication when their parameters vary
from cycle to cycle:

Theorem 4 Consider an elliptical rotation matrix with variable angle θk and symmetric
fluctuations of the Lk parameter about its mean value L0. The variations are thus written in
the form Lk = L0(1 + ηk), where the odd moments 〈η2n+1

k 〉 = 0 for all integers n. For small
fluctuations |ηk| < 1, the growth γ rate for matrix multiplication takes the form

γ = 1

2
lim

N→∞
1

N

N∑

k=1

log

[

cos2 θk + sin2 θk

〈
1

1 + ηj

〉]

+ O
(
η4

k

)
. (83)

Proof We first break up the matrix into two parts so that

Ek = I cos θk + sin θk Zk, (84)

where I is the identity matrix and where

Zk =
[

0 −Lk

1/Lk 0

]

. (85)

The product of N matrices Ek becomes

E (N) =
N∏

k=1

Ek =
N∑

�=0

CN
�∑

k=1

(
N−�∏

i=1

cos θi

)

k

⎛

⎝
�∏

j=1

Zj sin θj

⎞

⎠

k

, (86)

where the subscripts on the products denote different realizations. The products of even
numbers � = 2n of matrices Zk produce diagonal matrices of the form

Z (�) = Z (2n) =
n∏

k=1

Z2k Z2k−1 = (−1)n

[
P A

n 0
0 P B

n

]

, (87)

where the matrix elements P A
n and P B

n are given by (81). Similarly, the product of odd
numbers � = 2n + 1 of matrices Zk produce off-diagonal matrices of the form

Z (�) = Z (2n+1) =
{

n∏

k=1

Z2k+1 Z2k

}

Z1 = (−1)n

[
0 −P A

n L1

P B
n /L1 0

]

, (88)
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where the Pn are defined previously. Next we write the expectation values of these products
in the form

〈Pn〉 =
〈

n∏

j=1

L2j

L2j−1

〉

=
〈

n∏

j=1

1 + η2j

1 + η2j−1

〉

=
〈

1

1 + ηj

〉n
≡ Rn. (89)

This expression holds because the odd powers of the ηj vanish in the mean, and the samples
of the different η’s are independent.

The eigenvalue �N of the product matrix at the N th iteration can be written in terms of
its matrix elements, i.e.,

�N = σ11 + σ22. (90)

Without loss of generality, let N = 2K be even. The matrix elements σ11 = σ22 = σ are
given by

σ =
K∑

m=0

C2K
2m∑

k=1

(
2K−2m∏

i=1

cos θi

)

k

(
2m∏

i=1

sin θi

)

k

(−1)mRm, (91)

where C2K
2m is the binomial coefficient and where we have used (89). This expression for σ

contains the even terms of a binomial expansion. We can thus write the eigenvalue in the
form

�N =
N∏

k=1

[
cos θk + i sin θk R1/2

]
k
+

N∏

k=1

[
cos θk − i sin θk R1/2

]
k
. (92)

Next we define

Ak ≡ [cos2 θk + sin2 θk R
]1/2

and tanαk ≡ R−1/2 tan θk. (93)

The eigenvalue takes the form

�N = 2

(
N∏

k=1

Ak

)

cos

(
N∑

k=1

αk

)

, (94)

and the corresponding growth rate becomes

γ = 1

2
lim

N→∞
1

N

N∑

k=1

log
[
cos2 θk + sin2 θk R

]
. (95)

Using the definition of R, we obtain the result of Theorem 4. The order of the error term
follows by comparing (95) with the leading order expansion [2]. �

In the regime of small ηk � 1, the expression for the growth rate reduces to the form

γ = 1

2

〈
sin2 θk

〉 〈
η2

k

〉
. (96)

This section shows that instability does not require a finite threshold for the amplitude
of the fluctuations in Lk . Nonzero amplitude leads to instability with growth rate γ ∝ 〈η2

k〉.
Variations in the original parameters (λk, qk) of Hill’s equation lead to fluctuations in the
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principal solutions (hk, gk); fluctuations in the (hk, gk) lead to variations in the Lk and hence
growth. As a result, Hill’s equation with random forcing terms is generically unstable. One
notable exception occurs when the hk = 0 or hk = 1 (Result 8).

6 Conclusion

This paper provides expressions for the growth rates for the random 2×2 matrices that result
from solutions to the random Hill’s equation (1). Theorem 1 gives an exact expression for
the growth rate. Theorems 2 and 3 provide approximate growth rates for the regimes where
the variables φk are small, and close to unity, respectively. Additional approximations for
are given in Sect. 4. When Hill’s equation is classically stable, the discrete map that governs
the solutions has the form of an elliptical rotation matrix (72). With fixed elements, such
matrices are stable under multiplication; variations in the Lk parameter lead to instability.
For small symmetric fluctuations of the length parameter Lk , the growth rate is given by
Theorem 4.
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